Все о простудных заболеваниях

Исследования земли из космоса. Исследования планеты с помощью космических аппаратов Космические методы исследования почв

Первые изображения Земли из космоса были получены с помощью фотокамеры. Эта методика применяется и в настоящее время. Спутник с фоторегистрацией «Ресурс-Ф1 М» (Россия) позволяет фотографировать Землю в интервале длин волн 0,4-0,9 мкм. Отснятые материалы спускаются на Землю и проявляются. Анализ снимков, как правило, проводится визуально с помощью проекционной аппаратуры, которая позволяет также получать цветные фотоотпечатки. Метод обеспечивает высокую геометрическую точность изображения; можно увеличить снимки без заметного ухудшения качества. Однако он малооперативен, поскольку изображение представлено в виде фотографий, а не в цифровой форме, и эффективен в видимом и ближнем ИК-диапазонах.

Этих недостатков лишены сканерные методы. Сканер с цилиндрической разверткой в принципе представляет собой маятник, закрепленный в одной точке и колеблющийся поперек направления движения аппарата (рис. 3). На конце маятника в его фокальной плоскости установлен объектив с точечным фотоприем ным устройством (фотоэлектронный умножитель, фотодиод, фоторезистор).

Рис. 3

При движении аппарата над Землей с выхода фотоприемного устройства снимается сигнал, пропорциональный освещенности в видимом или ближнем ИК-диапазоне того участка земной поверхности, на который в данный момент направлена ось объектива. Еслифотоприемное устройство-фоторезистор, то можно регистрировать излучение в тепловом ИК-диапазоне и определять температуру поверхности и об лаков. На практике сканер неподвижен, а качается (вращается) зеркало, отражение от которого через объектив попадает на фотоприемное устройство. Сканерная информация в цифровой форме передается со спутника в реальном времени или в записи на бортовой магнитофон, на Земле она обрабатывается на ЭВМ.

Линейный сканер содержит расположенные в линию неподвижные фоточувствительные элементы 190-1000 и более на приборах с зарядовой связью (ПЗС)-линейку ПЗС или несколько таких линеек длиной порядка сантиметра. На линейки через объектив фокусируется изображение земной поверхности, все элементы находятся в фокальной плоскости. Линейка, ориентированная поперек направления движения спутника, перемешается вместе с ним, последовательно «считывая» сигнал, пропорциональный освещенности различных участков поверхности и облаков. Линейные сканеры на ПЗС работают в видимом и ближнем ИК-диапазонах.

Сканер МСУ-СК, устанавливаемый на российских спутниках «Ресурс-О» и др., единственный, в котором реализован перспективный принцип конической развертки, заключающийся в перемещении визирного луча по поверхности конуса с осью, направленной в надир. Сканирующий луч описывает по сферической поверхности Земли дугу (обычно в переднем секторе сканирования). За счет перемещения спутника изображение представляет собой совокупность дуг. Достоинством такого вида развертки является постоянство угла между поверхностью Земли и направлением на спутник, что особенно важно при изучении растительности. Постоянно также расстояние L от спутника до каждой точки дуги, так что разрешение сканера МСУ-СК, в отличие от сканеров с цилиндрической и линейной разверткой, постоянно по всему изображению. При этом для достаточно больших участков изображения постоянно и атмосферное ослабление восходящего излучения и нет необходимости в атмосферной коррекции. Отсутствуют также искажения изображения за счет кривизны Земли, характерные для других сканеров.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Общая характеристика дистанционных методов

2. Методы изучения Земли из космоса

2.1 Оптические методы

2.2 Радиотехнические методы

2.3 Спутниковые методы

3. Дистанционное зондирование Земли из космоса

3.1 Орбиты спутников

3.2 Прием спутниковой информации

3.3 Спутники для дистанционного зондирования

Заключение

Список литературы

ВВЕДЕНИЕ

Космические средства дистанционного зондирования Земли (ДЗЗ) в настоящее время получили широчайшее применение во всем мире, выросло разнообразие создаваемых типов космических аппаратов ДЗЗ и общее их количество. Получаемая ими космическая информация используется для решения многих хозяйственных и научных задач мониторинга окружающей среды. На этой основе достигается ощутимое повышение эффективности производственной деятельности в таких областях, как картографирование, землеустройство и землепользование, контроль источников загрязнения окружающей среды и наблюдение за экологической обстановкой, сельское хозяйство, лесозаготовки и лесовосстановление, планирование и поиск полезных ископаемых, прокладка рациональных маршрутов и т.д. Важнейшее значение имеют также многолетние ряды космических данных ДЗЗ для проведения климатологических исследований, изучения Земли как целостной экологической системы, обеспечения различных изысканий и работ в интересах океанографии, океанологии и других отраслей экономики и науки.

1 . ОБЩАЯ ХАРАКТЕРИСТИКА ДИСТАНЦИОННЫХ МЕТОДОВ

Для наблюдения Земли из космоса используют дистанционные методы: исследователь имеет возможность на расстоянии получать информацию об изучаемом объекте. Дистанционные методы, как правило, являются косвенными, т.е. с их помощью измеряют не интересующие нас параметры объектов, а некоторые связанные с ними величины. Например, нам необходимо оценить состояние сельскохозяйственных посевов. Но аппаратура спутника регистрирует лишь интенсивность светового потока от этих объектов в нескольких участках оптического диапазона. Чтобы «расшифровать» такие данные, требуются предварительные исследования, включающие в себя различные эксперименты по изучению состояния растений контактными методами; по изучению отражательной способности листьев в различных участках спектра и при различном взаимном расположении источника света (Солнца), листьев и измерительного прибора. Далее необходимо определить, как выглядят те же объекты с самолета, и лишь после этого судить о состоянии посевов по спутниковым данным.

Методы изучения Земли из космоса не случайно относят к высоким технологиям. Это связано не только с использованием ракетной техники, сложных оптико-электронных приборов, компьютеров, но и с новым подходом к получению и интерпретации результатов измерений. И хотя трудоемкие подспутниковые исследования проводятся на небольшой площади, они дают возможность обобщать данные на огромные пространства и даже на весь земной шар. Широта охвата является характерной чертой спутниковых методов исследования Земли. К тому же эти методы, как правило, позволяют получать результат за сравнительно короткий интервал времени. В настоящее время для Сибири с ее бескрайними просторами спутниковые методы естественно приемлемы.

Примеры изображений Земли из космоса представлены на рис. 1.1 и 1.2.

К числу особенностей дистанционных методов относится влияние среды (атмосферы), через которую проходит сигнал со спутника. Самый простой пример такого влияния - наличие облачности, закрывающей интересующие объекты и делающей невозможным наблюдения в оптическом диапазоне. Однако и при отсутствии облачности атмосфера ослабляет излучение от объекта, особенно в полосах поглощения составляющих ее газов. Поэтому приходится работать в так называемых окнах прозрачности, учитывая, что и в них имеют место поглощение и рассеяние излучения газами и аэрозолем. В радиодиапазоне возможно наблюдение Земли и сквозь облачность.

Информация о Земле поступает со спутников, как правило, в цифровом виде, что также характерно для дистанционных методов. Наземная цифровая обработка изображений проводится на ЭВМ; в настоящее время она относится к числу наиболее динамично развивающихся информационных технологий, применяемых в робототехнике, полиграфии, медицине, физическом материаловедении и т.д.

Современные спутниковые методы позволяют не только получать изображение Земли. Используя чувствительные приборы, удается измерять концентрацию атмосферных газов, в том числе вызывающих парниковый эффект. Спутник «Метеор-3» с установленным на нем прибором TOMS позволял за сутки оценить состояние всего озонового слоя Земли. Спутник NOAA кроме получения изображений поверхности дает возможность исследовать озоновый слой и даже изучать вертикальные профили параметров атмосферы (давление, температуру, влажность на разных высотах в сотнях точек в полосе обзора).

Дистанционные методы делят на активные и пассивные. При использовании активных методов спутник посылает на Землю сигнал собственного источника энергии (лазера, радиолокационного передатчика), регистрирует его отражение. Радиолокация позволяет «видеть» Землю сквозь облака. Чаще используются пассивные методы, когда регистрируется отраженная поверхностью энергия Солнца либо тепловое излучение Земли.

2 . Методы изучения Земли из космоса

2 .1 Оптические методы

Первые изображения Земли из космоса были получены с помощью фотокамеры. Эта методика применяется и в настоящее время. Спутник с фоторегистрацией «Ресурс-Ф1 М» (Россия) позволяет фотографировать Землю в интервале длин волн 0,4-0,9 мкм. Отснятые материалы спускаются на Землю и проявляются. Анализ снимков, как правило, проводится визуально с помощью проекционной аппаратуры, которая позволяет также получать цветные фотоотпечатки. Метод обеспечивает высокую геометрическую точность изображения; можно увеличить снимки без заметного ухудшения качества. Однако он малооперативен, поскольку изображение представлено в виде фотографий, а не в цифровой форме, и эффективен в видимом и ближнем ИК-диапазонах.

Этих недостатков лишены сканерные методы. Сканер с цилиндрической разверткой в принципе представляет собой маятник, закрепленный в одной точке и колеблющийся поперек направления движения аппарата (рис. 3). На конце маятника в его фокальной плоскости установлен объектив с точечным фотоприем ным устройством (фотоэлектронный умножитель, фотодиод, фоторезистор).

Рис. 3 - Схема сканирования поверхности Земли

При движении аппарата над Землей с выхода фотоприемного устройства снимается сигнал, пропорциональный освещенности в видимом или ближнем ИК-диапазоне того участка земной поверхности, на который в данный момент направлена ось объектива. Еслифотоприемное устройство-фоторезистор, то можно регистрировать излучение в тепловом ИК-диапазоне и определять температуру поверхности и об лаков. На практике сканер неподвижен, а качается (вращается) зеркало, отражение от которого через объектив попадает на фотоприемное устройство. Сканерная информация в цифровой форме передается со спутника в реальном времени или в записи на бортовой магнитофон, на Земле она обрабатывается на ЭВМ.

Линейный сканер содержит расположенные в линию неподвижные фоточувствительные элементы 190-1000 и более на приборах с зарядовой связью (ПЗС)-линейку ПЗС или несколько таких линеек длиной порядка сантиметра. На линейки через объектив фокусируется изображение земной поверхности, все элементы находятся в фокальной плоскости. Линейка, ориентированная поперек направления движения спутника, перемешается вместе с ним, последовательно «считывая» сигнал, пропорциональный освещенности различных участков поверхности и облаков. Линейные сканеры на ПЗС работают в видимом и ближнем ИК-диапазонах.

Сканер МСУ-СК, устанавливаемый на российских спутниках «Ресурс-О» и др., единственный, в котором реализован перспективный принцип конической развертки, заключающийся в перемещении визирного луча по поверхности конуса с осью, направленной в надир. Сканирующий луч описывает по сферической поверхности Земли дугу (обычно в переднем секторе сканирования). За счет перемещения спутника изображение представляет собой совокупность дуг. Достоинством такого вида развертки является постоянство угла между поверхностью Земли и направлением на спутник, что особенно важно при изучении растительности. Постоянно также расстояние L от спутника до каждой точки дуги, так что разрешение сканера МСУ-СК, в отличие от сканеров с цилиндрической и линейной разверткой, постоянно по всему изображению. При этом для достаточно больших участков изображения постоянно и атмосферное ослабление восходящего излучения и нет необходимости в атмосферной коррекции. Отсутствуют также искажения изображения за счет кривизны Земли, характерные для других сканеров.

2 .2 Радиотехнические методы

В общих чертах принцип активной радиолокации состоит в следующем. На спутнике устанавливается передатчик, посылающий с помощью антенны в направлении Земли импульсы с высокочастотным заполнением (рис, 1.15). После этого наступает пауза, в течение которой Производится прием отраженных сигналов. Если импульс отражается от некоторого объекта M, расположенного на расстоянии L от спутника, то отраженный сигнал вернется назад через интервал времени Дt=2L/c, где с-скорость света, множитель 2 учитывает, что сигнал проходит путь L дважды: от радиолокатора до объекта и от объекта до радиолокатора. Чем дальше объект от радиолокатора, тем больше Дt. Интенсивность отраженных сигналов зависит от дальности и различна для различных объектов, так как они отличаются размерами и электрофизическими характеристиками. Измеряя Дt, можно найти расстояние до объекта. Таким образом, средствами радиолокационной техники автоматически осуществляется сканирование по дальности, так как сигналы от разных объектов приходят в разнос время.

Для достижения высокого пространственного разрешения вдоль строки необходимо использовать очень короткие импульсы, поскольку электромагнитная волна распространяется со скоростью света, проходя 300 м за 1 мкс. Укорочение импульса приводит к уменьшению его энергии, что не всегда приемлемо, поэтому высокочастотное заполнение сравнительно длинного импульса (длительностью в несколько микросекунд) модулируют в передатчике специальным образом, а отраженный сигнал в приемнике сжимают (укорачивают). Для современной техники разрешение в 5-10 м не является пределом. Радиолокатор перемещается вместе со спутником, последовательно считывая по строкам сигнал интенсивностью, пропорциональной отражательной способности различных участков поверхности. Строки, как и в сканерах оптического диапазона, расположены поперек движения спутника. Отсюда следует, что антенна радиолокационной станции, принимающая отраженные сигналы, должна быть направлена именно в этом, боковом направлении (см. рис. 4), поэтому такого рода устройства называют радиолокационными станциями бокового обзора (РЛС БО).

Рис. 4 - Схема работы радиолокатора бокового обзора

Пространственная разрешающая способность РЛС БО в направлении движения спутника (разрешение между строками) зависит от направленных свойств приемной антенны. Антенна выполняет те же функции, что и оптическая система на рис. 5, суммируя в пределах аппертуры энергию, приходящую от некоторого участка местности М на Поверхности.

Чем меньше этот участок, тем лучше разрешение. Зависимость мощности на выходе антенны от углов у и 5, называемая диаграммой направленности антенны по мощности, аналогична показанной на рис. 6.

На практике применяются как РЛС БО с реальной апертурой (их называют также некогерентными РЛС БО), так и РСА-так называемые когерентные РЛС БО. Преимуществом некогерентных РЛС являются более широкая полоса обзора и относительная простота как самого радиолокатора, так и системы обработки информации. Радиолокационные системы с синтезированной апертурой позволяют получать наиболее высокое разрешение, но требуют сложной системы обработки на борту. В целом же пространственное разрешение РЛС БО (10-100 м для РСА и 1-2 км для некогерентных РЛС БО) сравнимое разрешением оптических систем. На рис. 5 представлено радиолокационное изображение горной местности на юге Красноярского края с разрешением 100 м, полученное с помощью РСА, установленного на космическом пилотируемом аппарате Space Shuttle (США).

Для сигналов РЛС очень важна их чувствительность к содержанию воды в объектах, так как наличие воды увеличивает проводимость среды и интенсивность отражения от нее. Как и в оптическом диапазоне в радиоволновом сигналы различной длины волны несут различную информацию об окружающей среде. В частности, для густой растительности интенсивность отражения в пределах сантиметрового диапазона растет приблизительно обратно пропорционально длине волны, а для редкой растительности-обратно пропорционально ее квадрату.

Для работы в радиодиапазоне весьма важна поляризация отраженной волны-направление вектора напряженности электрического поля Е. РЛС может излучать сигналы с горизонтальной поляризацией (вектор E расположен горизонтально) либо с вертикальной (вектор Е расположен вертикально), а иногда применяют оба вида поляризации: горизонтальную на одной длине волны, вертикальную - на двух. Отраженная от объекта волна может частично менять свою поляризацию, поэтому приемная антенна спутника нередко построена так, что бы принимать сигналы с двумя видами поляризации на каждой частоте. Сравнивая эти сигналы, т.е. оценивая анизотропию поляризации сигнала, можно получить дополнительные сведения об объекте, его структуре и электрофизических характеристиках. Если средства дистанционного зондирования оптического диапазона наиболее эффективны при изучении растительности, обнаружении пожаров, оценке температуры поверхности, то активные средства, работающие в радиодиапазонах, перспективны для получения сведений о почве и геологических структурах, при изучении водоемов, льдов на суше и на воде, в океанологии и несколько в меньшей степени для изучения растительности. Качество радиолокационной съемки не зависит от освещенности поверхности Земли и от наличия облачного покрова, что выгодно отличает эти системы от оптических средств дистанционного зондирования.

Космические платформы, оснащенные бортовыми радиолокаторами - наиболее дорогостоящие, крупногабаритные и массивные спутники из всех аппаратов, предназначенных для исследования Земли. В этом смысле рекордсменом был спутник «Алмаз-1А» с когерентной РЛС БО, имевший массу 18,55 т. Отметим, что на спутники одновременно с РЛС БО, как правило, устанавливают и аппаратуру дистанционного зондирования оптического диапазона.

К средствам активного радиолокационного зондирования относят также высотомеры и скаттерометры. Радиолокационные высотомеры применяют для измерения высотного профиля подстилающей поверхности с точностью 2-8 см и для получения информации о форме морской поверхности, гравитационных аномалиях, высоте волн, скорости ветра, уровнях приливов, скорости поверхностных течений, ледовом покрове и т.д.

Принцип действия скаттерометров (измерителей характеристик рассеяния) основан на зависимости эффективной площади рассеяния морской поверхности и ее анизотропии от скорости и направления ветра. Основным назначением их является определение синоптического поля ветра, что не требует высокого пространственного разрешения; скаттерометры создаются на основе РЛС с непрерывным излучением.

В заключение кратко остановимся на пассивном радиотехническом методе наблюдения земной поверхности из космоса - радиометрическом зондировании в микроволновом диапазоне (частоты 1-100 ГГц). Как и приборы дальнего ИК-диапазона, радиометры регистрируют собственное тепловое излучение поверхности. Обычно их калибруют в радиационных (радиояркостных) температурах Тя. По сравнению с зондированием в ИК-области спектра радиометрический метод обладает важными преимуществами: возможностью получения информации о параметрах верхнего слоя грунта (например, о влажности на глубинах до 1-2 м), о параметрах ледяного покрова, морского волнения и др. В этом диапазоне волн атмосфера практически прозрачна. По сравнению с ИК в радиодиапазоне наблюдаются значительные яркостные контрасты при одинаковых температурах объектов.

Вместе с тем радиометрическим методам свойственны и принципиальные недостатки: меньшее угловое разрешение, чем при инфракрасной радиометрии, а также более низкая абсолютная точность измерения температуры, так как в соответствии с формулой Планка при обычной температуре плотность потока мощности излучения в ИК-диапазоне во много раз больше, чем в микроволновом.

2 .3 Спутниковые методы исследования атмосферы

Искусственные спутники Земли позволяют не только наблюдать из космоса поверхность суши, водоемов и облаков, но и определять средами оптической спектроскопии концентрацию некоторых газов и аэрозолей.

Естественные и антропогенные примеси, вызывающие локальное загрязнение территорий, могут разноситься потоками воздуха по всему земному шару. Например, выбросы Норильского горно-металлургического комбината заметны на Аляске и в Канаде, в Японии идут кислотные дожди из-за промышленных выбросов в Китае. Основная роль и выявлении глобального загрязнения атмосферы отводится спутниковым методам. Для оценивания содержания малых газов, С02 и аэрозолей используют спутниковые спектрофотометры. На рис. 9, построенном по данным спутника TOMS/ЕР за 1 октября 1994 г., видны выбросы СO2 при извержении вулкана Ключевская сопка (отмечена крестом), Норильского комбината (стрелка) и выбросы из Китая (внизу рисунка).

Спектрофотометры УФ- и видимого диапазонов регистрируют интенсивность рассеянного «назад» излучения Солнца. Спектрофотометры ИК-диапазона фиксируют интенсивность прошедшего через атмосферу теплового излучения от поверхности Земли и облаков. Частицы аэрозолей, как правило, имеющие несферическую форму, пол действием воздушных потоков ориентируются приблизительно в одном направлении, поэтому солнечный свет, рассеянный аэрозолями, имеет эллиптическую поляризацию. Измеряя характеристики поляризации рассеянного излучения, можно оценить концентрацию аэрозолей.

При определении спутниковыми методами общего содержания озона О3 (ОСО) в атмосфере используются интенсивные полосы поглощения озона в УФ- и ИК-областях.

3 . Дистанционное зондирование земли из космоса

3 .1 Орбиты спутников

Траектория движения искусственного спутника Земли называется его орбитой. При выключенных маршевых реактивных двигателях свободное движение спутника под действием гравитационных сил и по инерции подчиняется законам небесной механики. Считая Землю строго сферической с равномерным распределением массы внутри нее, а действие гравитационного поля Земли единственной силой, действующей на спутник, можно решить так называемую задачу Кеплера, которая сводится к уравнению кривой второго порядка-эллипса (или окружности-частного случая эллипса);

md2r/dt2 = -гтМr/r3, где т-масса спутника, М=5,976-1027 г-масса Земли, г-радиус- вектор, соединяющий спутник и центр Земли, r-его модуль, г=6,67-10-14 м3/гс3-гравитационная постоянная. Решая уравнение в полярных координатах r, v, получаем

Рис. 10 - Эллиптическая орбита

Эллиптическая орбита, по которой вращается спутник (рис. 10, где в точке S находится спутник, а в точке G-Земля), характеризуется следующими параметрами: а = АО и b = ОС - большая и малая полуоси эллипса; е=(1-b2/а2)1/2- эксцентриситет орбиты", угол ПGS-угловая координата v радиуса-вектора (так называемая истинная аномалия); фокальный параметр р=b2/а; р=К/гт2М, где К-момент количества движения спутника. К параметрам орбиты спутника относится также период обращения Т-время между двумя последовательными прохождениями одной и той же точки орбиты.

В рамках задачи Кеплера спутник движется в плоскости орбиты, проходящей через центр Земли. В так называемой абсолютной или звездной системе координат плоскость орбиты неподвижна. Абсолютная система-это декартова система координат с началом в центре Земли, неподвижная относительно звезд. Ось Z нaпpaвлeнa вдоль оси вращения Земли и указывает на север, ось X направлена на точку весеннего равноденствия, в которой находится Солнце 21 марта в 0 ч по всемирному времени, а ось Y перпендикулярна осям X и Z

В общем случае плоскость орбиты пересекается с плоскостью экватора Земли по так называемой линии узлов (см. рис. 11). Точка В, в которой орбита пересекает плоскость экватора при движении спутника с юга на север, называется восходящим узлом орбиты, точка H пересечения при движении спутника с севера на юг - нисходящим узлом. Положение восходящего узла определяется долготой восходящего узла, т.е. углом Щ между восходящим узлом и точкой весеннего равноденствия, отсчитываемым против часовой стрелки, если смотреть со стороны Северного полюса. Для линии узлов задают два угла в плоскости орбиты. Угол щ-угловое расстояние, отсчитываемое от восходящего узла в плоскости орбиты до перигея орбиты П, т.е. ближайшей к Земле точки орбиты спутника; щ со называют аргументом перигея. Угол i между плоскостью орбиты и плоскостью экватора, называемый наклонением орбиты, отсчитывается от плоскости экватора с восточной стороны восходящего узла орбиты, против движения часовой стрелки. По наклонению различают экваториальные (i = 0°), полярные (i=90") и наклонные (0 < i < 90°, 90 < i < 180°) орбиты.

Долгота восходящего узла Щ, наклонение / и аргумент перигея со характеризуют положение плоскости орбиты и ее ориентацию в пространстве. Форму и размер орбиты задают фокальный параметр р и эксцентриситет е. Для привязки движения спутника ко времени в число элементов вводится время прохождения спутником точки начала отсчета t0. Совокупность параметров Щ, щ, i, р, е, i0 называется кеплеровскими элементами или элементами орбиты.

Зная параметры Щ, щ, i, р, е и положение спутника на орбите в момент i0, можно найти это положение в любой другой момент времени

Рис. 11 - Диаграмма, иллюстрирующая вычисление положения спутника

спутник земля траектория зондирование

Пусть спутник движется вокруг Земли G по эллиптической орбите. Проведем из центра этой орбиты О окружность радиусом, равным большой полуоси эллипса (рис. 11). Предположим, что в момент /п спутник находился в перигелии орбиты П, а в момент сместился в точку S. Угол ПGS (между направлением на перигелий и радиусом-вектором), как указывалось, называется истинной аномалией v в момент t0. Проведем через S прямую, перпендикулярную к оси ОП и пересекающуюся в точке Р с окружностью. Угол ПОР называется эксцентрической аномалией Е в момент t0. Представим теперь точку, которая выходит из перигелия одновременно со спутником и движется по окружности равномерно со скоростью, равной средней скорости движения спутника по орбите. Эта средняя скорость называется средним движением и равна п=360°/Т, где Т-период обращения. Если в момент t0 такая точка займет положение Р" то угол ПОР" будет равен М=n(t0-tп). Эта величина называется средней аномалией в момент t0. Решая трансцендентное уравнение:

Е-esinE=М, называемое уравнением Кеплера, можно найти эксцентрическую аномалию Е. Истинная аномалия к характеризующая положение спутни- ки на орбите в абсолютной системе координат в момент t0, связана с Е И эсцентриситетом е соотношением

tgv/2=[(1+e)/(l-e)]I/2tgE/2.

Зная среднее движение п и истинную аномалию v в момент t0, можно вычислить tп и далее истинную аномалию v в момент t1 т.е. определить положение спутника на орбите.

Однако кеплеровские элементы дают лишь приближенное описание орбиты спутника. Вопервых, массы внутри Земли распределены неравномерно. Во-вторых, на движение спутника влияет сопротивление земной атмосферы. В-третьих, необходим учет светового давления солнечных лучей. В-четвертых, нужно учитывать притяжение Луны и Солнца и др. Влияние этих сил на движение ИСЗ мало по сравнению с силой притяжения Земли. Они называются возмущающими силами, а движение спутника с учетом их воздействия - возмущенным движением. Основным источником возмущений является первый фактор. Если учитывать только первую зональную гармонику в разложении гравитационного потенциала Земли (она описывает сжатие Земли с полюсов), то окажется, что в основном изменяется ориентация op- виты в пространстве, а форма и размеры орбиты остаются постоянными. За один оборот долгота восходящего узла Щ и аргумент перигея щ изменяются на

ДЩ = -0°,58 (R0/a)2cos2i/(1 - е2)2,

Дщ = 0°,29 (R0/a)2 (5cos2i- 1)/(1 - е2)2,

Где R0=6378,14 км - экваториальный радиус. Эти выражения, в первом приближении определяющие поправки к долготе восходящего узле Щ и аргументу перигея щ, позволяют уточнить положение орбиты в абсолютной системе координат.

Спутник, движущийся в земной атмосфере, испытывает аэродинамическое торможение, зависящее от плотности атмосферы на высоте Полета, от скорости спутника, площади его поперечного сечения и массы. Возмущение орбиты за счет аэродинамического торможения содержит регулярную и нерегулярную составляющие. К регулярным возмущениям приводит суточный эффект (ночью, т.е. в конусе земной тени, Плотность атмосферы на данной высоте меньше, чем днем). Движение воздушных масс, влияние потоков заряженных частиц, выбрасываемых солнцем, приводят к нерегулярным возмущениям. Для природоведческих спутников сопротивление атмосферы играет заметную роль только при низких орбитах; при высоте перигея более 500-600 км возмущающее ускорение от неравномерности распределения масс превышает на два порядка и более ускорение от торможения в атмосфере.

При высоте перигея от 500-600 до нескольких тысяч километров к основному возмущающему фактору добавляется давление солнечного света (вместо сопротивления атмосферы). Влияние этого давления проявляется в дополнительных малых периодических возмущениях элементов орбиты. Если же спутник движется так, что регулярно попадает в конус земной тени, то имеют место также и небольшие постоянные изменения элементов. Но ускорение за счет давления света на несколько порядков меньше возмущающего ускорения за счет основного фактора. Еще слабее влияние притяжения Луны и Солнца.

Спутники для дистанционного зондирования Земли запускают в основном на круговые орбиты. Малое значение эксцентриситета орбиты спутника NOAA-14, равное е = 0,0008831, достаточно типично. Такой спутник пролетает над различными участками Земли на одинаковой высоте, что обеспечивает равенство условий съемки. В этом случае справедливо соотношение:

В левой части стоит центробежная сила, справа-сила притяжения спутника к Земле. Здесь т-масса спутника, V-скорость его на орбите, M=5,976-1027г-масса Земли, R=R0+Н-расстояние между спутником и центром Земли, причем R0=6370 км-радиус Земли, H-высота спутника над поверхностью Земли, г-гравитационная постоянная. Таким образом, V=Mг/R2, период обращения спутника Т= - 2R/V.

Обозначим: B = (Мг)1/2 = 6,31-102 км3/2/с. Тогда V- B/R1/2, Т=2рR3/2/В.

Скорость перемещения подспутниковой точки по поверхности Земли V3 может быть определена по формуле V3=VR0/R

Пусть Н=1000 км, тогда R=7370 км. Используя приведенные формулы, находим, что скорость на орбите V=7,35 км/с, V3=6,35 км/с, период обращения Т= 105 мин.

Низкоорбитальные спутники (H<1000 км) обычно выводятся на приполярные солнечно-синхронные орбиты. Эти орбиты имеют наклонение относительно экватора, близкое к 90°, обеспечивают съемку всей поверхности Земли, включая полярные области. Поворот орбиты относительно Земли синхронизован с вращением Земли относительно Солнца, так что в течение всего времени угол между плоскостью орбиты и направлением на Солнце постоянен (рис. 4.3.). Это позволяет производить съемку приблизительно в один и тот же час местного времени в течение всего года. Наиболее удобное время для съемки-около 12 ч местного времени.

Рис. 12 - Солнечно-синхронная работа

3 .2 Прием спутниковой информации

Станции для приема информации со спутников на Земле (называмые земными) содержат антенну с опорно-поворотным устройством (ОПУ), радиоприемное устройство и средства обработки, хранения И отображения информации (рис. 13).

Наиболее употребительные зеркальные антенны с параболическим рефлектором наводятся ОПУ на спутник по командам компьютера, в который заложены орбитальные данные. В фокусе антенны уставлен облучатель, сигнал с которого усиливается малошумяшим усилителем (МШУ). Далее сигнал по кабелю Поступает на приемник, цифровой сигнал с выхода которого обрабатывается на компьютере.

Рис. 13 - Станция для приема информации с природоведческих спутников

Наиболее дорогостоящей частью станции является антенна с ОПУ. Чаще всего используются ОПУ с азимутально-угломестной подвеской антенны, позволяющие разворачивать ее на ± 180° по горизонтали и на 90° по углу места, отсчитываемому от горизонта к зениту. Азимуально-угломестная подвеска обладает принципиальным недостатком: в области углов места, примыкающих к зениту, образуется «мертвая зона», в пределах которой невозможно обеспечить связь со спутником. Это объясняется тем, что с ростом угла места ш требуемая угловая скорость вращения антенны вокруг вертикальной оси возрастает, стремясь к бесконечности при ш >90°. Поскольку реальная скорость поворота антенны конечная, то, начиная с некоторого значения угла места, луч антенны отстанет от перемещения спутника, и сопровождение срывается. Таким образом, когда спутник близок к зениту, такой вид подвески не позволяет качественно принимать изображения той местности, где находится станция.

Для устранения «мертвой зоны» при прохождении спутника через зенит можно ввести в ОПУ третью ось. Однако в этом случае конструкция ОПУ резко усложнится. Во избежание этого можно сохранить двухосное поворотное устройство, но разместить ортогональные оси так, чтобы «мертвая зона» находилась в наименее существенной для поддержания связи части небесной полусферы, например ближе к горизонту.

При выборе конструкции антенны приходится учитывать различные факторы, в частности особенности распространения радиоволн на трассе Земля-космос. Для передачи сигналов с природоведческих спутников чаще всего используют радиоволны дециметрового и сантиметрового диапазонов или соответственно частоты 300 МГц-30 ГГц. В этом частотном диапазоне отдельные полосы переуплотнены различными радиослужбами. Так, полоса 300 МГц-10 ГГц интенсивно используется наземными радиостанциями. При этом повышается уровень взаимных помех, снижается качество радиосвязи.

При прохождении радиоволн сквозь атмосферу Земли приходится учитывать влияние тропосферы (0-11 км) и ионосферы (выше 80 км), поскольку в указанном интервале частот они несколько затухают в атмосферных газах и осадках. При этом изменяется поляризация волны, возникают дисперсионные искажения.

При прохождении через ионосферу линейно-поляризованные (в частности, горизонтально и вертикально поляризованные) радиоволны расщепляются на два эллиптически поляризованных компонента (обыкновенный и необыкновенный), которые распространяются с разной скоростью из-за влияния магнитного поля Земли. В результате сложения этих компонентов в точке приема плоскость поляризации результирующей волны будет повернута на некоторый угол (эффект Фарадея), зависящий от электронной концентрации Тe в ионосфере и напряженности геомагнитного поля Н вдоль пути радиоволн в ионосфере. Для него характерна регулярная зависимость от времени суток, сезона и фазы цикла солнечной активности, а также случайные изменения, связанные с геомагнитными бурями и нерегулярными ионосферными неоднородностями. На частоте 1 ГГц угол поворота лежит в пределах 1-100° и уменьшается с ростом частоты как I/f2. Эффект поворота плоскости поляризации учтен в конструкции антенны: выбираются антенны и облучатели, способные принимать сигналы с круговой поляризацией, например спиральные антенны и спиральные облучатели.

При прохождении через ионосферу широкополосные сигналы искажаются, поскольку время распространения составляющих его спектра будет различно. Это явление, известное как относительная дисперсия, характеризуется разностью задержек между нижней и верхней частотами спектров сигналов, распространяющихся через ионосферу.

Относительная дисперсия зависит от Nc и Н и. обратно пропорциональна f3, на частоте 1 ГГц может иногда достигать 0,4 нс/МГц и приводить к искажению сигналов, при полосе частот 100 МГц это 0,4 мкс.

Мощность сигнала в месте приема может быть оценена из следующих соображений. Если L-расстояние между передатчиком и приемником, Рпер-мощность передатчика, то при условии, что излучение энергии происходит равномерно по всем направлениям (изотропный излучатель), вся энергия распределяется по площади сферы радиусом L, равной 4рL2 Мощность, приходящаяся на 1 м2, т.е. плотность потока мощности,

П = Pnep/4рL2.

Реально спутник передает информацию только в нижнюю полусферу, в сторону Земли. Поэтому приведенное выражение следует умножить на так называемый коэффициент направленного действия антенны (КНД) D?1-отношение плотности потока мощности, излучаемой антенной в направлении максимума ее диаграммы направленности (см. рис. 1.11 и 1.13), к плотности потока мощности, которая излучалась бы Изотропным излучателем, при условии равенства общей излучаемой Мощности. КНД связан с площадью апертуры S и длиной волны л соотношением D = 4рS/л2. Если излучение происходит равномерно во всех направлениях в нижнюю полусферу, то D=2. На природоведческих спутниках обычно устанавливают передающие антенны с D=3~4, что позволяет земным станциям принимать информацию практически с любых направлений - от горизонта до горизонта. Таким образом,

П=PперD/4рL2,

Приемная антенна - это барьер, поглощающий поток энергии, Изучаемый передающей антенной. Пусть площадь апертуры приемной антенны равна S. Если пренебречь потерями в приемной антенне, ТО мощность сигнала на ее выходе

Pпр=SП=SPперD/4рL2,

В это выражение в явном виде не входит КНД приемной антенны, но с ростом S увеличивается отношение S/л2, увеличивается D и сужается диаграмма направленности. В результате снижается уровень помех и шумов, которые могут поступать в антенну с боковых направлений. Однако слишком узкая диаграмма направленности требует большой точности наведения антенны.

Пусть радиус апертуры приемной параболической антенны r=60 см: Pпер =5,5 Вт; D= 3; 870 км < L < 3400 км. Площадь апертуры антенны S=рr 2 =1,13 м2, при л=17,6 см ее КНД около 400, ширина диаграммы направленности по ее первому минимуму, определяемая согласно (1.7) как 0,61л/r около 10°. Эти реальные числа соответствуют мощности передатчика спутника NOAA, минимальному и максимальному расстоянию L от спутника до приемной станции, размеру антенны станции HRPT для приема информации с этого спутника. Расчет по формуле дает максимальное значение Pпр = 2-10-12 Вт, минимальное значение Pпр = 10-13 Вт. Современная радиотехника позволяет усиливать и более слабые сигналы, но при этом усиливаются также внешние по мехи и шумы и внутренние шумы радиоустройств.

Источниками внешних шумов в микроволновом диапазоне могут быть различные наземные радиопередатчики, существуют шумы и космического происхождения. Источником внутренних шумов радио устройств прежде всего является дискретная природа электричества, так как электрический ток-это поток дискретных частиц-электронов.

Интенсивность шума принято описывать следующим образом. Все источники внешних и внутренних шумов заменяются эквивалентным источником шума в виде некоторого активного сопротивления (резистора). Известно, что на зажимах резисторов из-за хаотического теплового движения электронов возникает разность потенциалов, изменяющаяся случайным образом. Средняя мощность такого шума (его называют тепловым) описывается формулой Найквиста; P=4kTДf, где к=1,38-10-23 Дж/град - постоянная Больцмана, Г-температура резистора, Дf-полоса частот, в пределах которой измеряется средняя мощность шума. Если входное сопротивление приемника равно входному сопротивлению антенны (т.е. приемник и антенна согласованы), то эквивалентная мощность шума

Рш = кТшДf.

В нашем случае Дf-ширина полосы пропускания приемника, равная, в свою очередь, ширине полосы частот, необходимой для передачи информации со спутника, Тш-эквивалентная шумовая температура антенны и приемника, не совпадающая с термодинамической температу рой, при которой находятся антенна и приемник. На прием сигналон с природоведческих спутников сильнее всего влияют внутренние шумы, и в первую очередь шумы первых каскадов усилителя радиосигналов. Поэтому во входных каскадах применяют малошумящие усилители (МШУ), которые конструктивно обычно совмещают с преобразоватечем несущей частоты сигнала в более низкую и помещают непосредственно в облучателе антенны. Современные МШУ имеют в микроволновом диапазоне Тш, порядка 40-70 К.

Пусть Тш= 70 К, Дf =2 МГц, что соответствует условиям приема сигналов со спутника NOAA. В этом случае Рш = 2-0-15 Вт, что на 2-3 порядка меньше мощности сигнала.

Мощность сигнала при прочих равных условиях определяется размерами антенны и ее КНД, средняя мощность шума - шумовой температурой. Отношение мощности сигнала к средней мощности шума (отношение сигнал/шум) является важнейшей характеристикой качества приема и зависит, таким образом, от отношения КНД антенны к шумовой температуре. Эту величину D/ Тш называют коэффициентом качества антенны. В рассмотренном примере коэффициент качества равен 5,7.

Выбор размеров приемной антенны определяется требованиями к коэффициенту качества и в конечном итоге - шириной полосы частот, необходимой для передачи информации со спутника. Последняя зависит от скорости передачи информации С. Для вычисления С необходимо знать параметры сканирующего устройства и скорость перемещения подспутниковой точки V3 по Земле. Если разрешение сканера вдоль направления движения спутника равно ДL, то в секунду считывается информация с V3/ДL строк. Пусть I - число бит, которое используется для записи яркости каждого пиксела, п-число спектральных каналов, К-коэффициент, зависящий от типа применяемого при передаче информации помехоустойчивого кодирования, K>2, N - число пикселов в строке, связанное с шириной полосы обзора G соотношением N=G/ДL. Тогда

С= V3NIKn/ДL= V3GIKn/ДL2

Например, для ДL= 1,1 км, V3= 6,56 км/с, G = 1670 км, I= 10 бит, п=5, К=1 скорость передачи информации С=500 кбит/с. Если ДL=100 м, что было бы очень желательно, то при тех же условиях С=50 Мбит/с. Улучшение пространственного разрешения приводит к увеличению информационного потока, который обратно пропорционален квадрату разрешения.

Полоса частот Дf, необходимая для передачи информации со спутника, зависит от вида модуляции высокочастотного колебания и ориентировочно равна (3-3,5)С. Для первого примера Дf= 1,5 МГц, для второго Дf? 150 М Гц. Очевидно, что при прочих равных условиях средняя мощность шума для второго примера на два порядка выше. Чтобы сохранить необходимое отношение сигнал-шум, требуется увеличить площадь антенны и ее КПД в 100 раз, а диаметр антенны - в 10 раз. Таким образом, если при скорости передачи в 500 Кбит/с, пространственном разрешении 1,1 км и полосе обзора 1670 км можно применять антенну диаметром 1 м, то при скорости передачи 55 Мбит/с, пространственном разрешении 100 м с сохранением той же полосы обзора - антенну диаметром 10 м.

Типичная земная станция HRPT для приема информации со спутников NOAA имеет параболическую антенну диаметром 1,2-1,5 м. В фокусе антенны установлен облучатель, сигнал с которого усиливается МШУ, а несущая частота сигнала преобразуется в более низкую. МШУ имеет Тш=60-80 К. Далее сигнал по кабелю поступает на приемник, который иногда оформлен в виде платы, вставляемой в персональный компьютер. Цифровой сигнал с выхода приемника обрабатывается на компьютерах. Обработка включает в себя секторизацию, т.е. «вырезание» из всего спутникового изображения интересующего участка, например размером 512x512 пикселов, лежащего вблизи надира. Далее выполняются геометрическая коррекция изображения и топографическая привязка его к карте, а также коррекция атмосферных искажений. Секторизованное и скорректированное изображение готово для дальнейшей обработки, целью которой обычно является улучшение качества изображения, распознавание объектов на изображении, определение их координат и других геометрических характеристик.

3 .3 Спутники для дистанционного зондирования

Спутник NOAA (США). Метеорологические и природоведческие спутники NOAA (рис. 4.5.) имеют длину 4,18 м, диаметр 1,88 м, массу на орбите 1030 кг. Круговая орбита имеет высоту 870 км, один виток спутник совершает за 102мин. Площадь солнечных батарей спутника 6м2, мощность батарей не менее 1,6 кВт, но со временем батареи деградируют из-за воздействия космических лучей и микрометеоров. Для нормальной работы спутника необходима мощность не менее 515 Вт.

В настоящее время на орбите функционируют несколько спутников. Сканер AVHRR спутника NOAA-14 с цилиндрическим сканированием имеет 8-дюймовую (20 см) оптическую систему Кассегрена, сканирование осуществляется путем вращения с частотой 6 об/с зеркала из бериллия. Угол сканирования ±55°, полоса обзора около 3000 км. Из- за кривизны Земли зона радиовидимости спутника составляет ±3400 км, поэтому за один проход спутника удается получить информацию с поверхности около 3000x7000 км.

Рис. 14 - Спутник NOAA (США)

Спектральные каналы сканера выбраны так, что попадают в окна прозрачности атмосферы:

1 - 0,58 - 0,68 мкм (красный участок спектра);

2 - 0,725 - 1,0 мкм (ближний ИК);

3 - 3,55 -3,93 мкм (участок ИК-диапазона, оптимальный для измерения излучения от лесных и других пожаров);

4 - 10,3 - 11,3 мкм (канал для измерения температуры поверхности суши, воды и облаков);

5 - 11,4 - 12,4 мкм (канал для измерения температуры поверхности суши, воды и облаков).

На спутнике NOAA-15 установлен дополнительный канал, работающий на волне длиной около 1,6 мкм для распознавания снега и льда.

В 1-м и 2-м каналах, спектральные характеристики которых приведены ниже, в качестве детекторов излучения применяются кремниевые фотодиоды. В 4-м и 5-м каналах установлены охлаждаемые до 105 К фоторезисторы на основе (HgCd) Те, в 3-м канале - охлаждаемый фоторезистор на основе InSb. На спутнике NOAA, как и на других спутниках, предусмотрена бортовая калибровка датчиков.

Рис. 15 - Спектральные характеристики 1-го (а) и 2-го (б) каналов сканера AVHRR

Сканер AVHRR имеет мгновенное поле зрения во всех каналах Дц=1,26-10-3 рад, разрешение на местности в подспутниковой точке выбрано ДL=1,1 км. Это связано с тем, что скорость спутника на орбите составляет 7,42 км/с, его проекция движется по поверхности Земли со скоростью 6,53 км/ч, сканер делает 6 сканов/с, за время одного скана проекция перемещается на l=6,53/6 км=1,09км. Указанному полю зрения в подспутниковой точке соответствует пиксел 1,1 х 1,1 км. Сигналы каждого канала квантуются на 1024 уровня (10-битное квантование). Передатчик спутника имеет мощность 5,5 Вт, частота 1700 М Гц. Скорость передачи цифровой информации со сканера AVHRR составляет 665,4 Кбит/с.

На спутнике установлена аппаратура HIRS для определения температуры в тропосфере на разных высотах (вертикальные профили атмосферы) в полосе обзора 2240 км. Для этого HIRS содержит автоматический сканирующий спектрофотометр ИК-диапазона, использующий свойство углекислого газа изменять положение и ширину линии поглощения на длинах волн порядка 14-15 мкм в зависимости от давления. Этот же прибор позволяет оценивать общее содержание озона ОСО в столбе атмосферы по поглощению теплового излучения от поверхности Земли и атмосферы на длине волны 9,59 мкм. И вертикальные профили, и ОСО вычисляются на приемном конце путем решения обратных задач.

Кроме указанной аппаратуры на спутник установлены; прибор SSU для исследования стратосферы; микроволновый прибор MSU для измерения температурных профилей стратосферы; аппаратура поиска и спасения по международной программе Kocпac/SARSAT; система ARGOS для сбора метеорологической и океанографической информации с автоматических метеостанций, морских буев и воздушных шаров; некоторые другие приборы. ARGOS позволяет следить за миграцией крупных животных и птиц, если к их телу прикреплены специальные малогабаритные передатчики.

Спутник «Ресурс-Ol» (Россия). Высота орбиты 650 км, период обращения 97,4 мин, угол наклонения орбиты 97°,97. Сканер МСУ-СК с конической разверткой имеет скорость сканирования 12,5 дуг/с; разрешение 150x250 м; полоса обзора 600 км; спектральные каналы: 0,5-0,6 мкм (зеленый участок спектра), 0,6-0,7 мкм (красный участок), 0,7-0,8 мкм (красный и ближний ИК), 0,8-1,1 мкм (ближний ИК), 10,5-12,5 мкм (тепловой, в этом канале разрешение 500 м). Сигнал каждого канала квантуется на 256 уровней. Масса сканера 55 кг.

Рис. 16 - Маршрут весеннего перелета (1995 г.) самца сокола-сапсана по данным ARGOS

На спутнике «Ресурс-01» (рисунок ниже) установлены также два сканера МСУ-Э с линейной разверткой, содержащие по 3 линейки на ПЗС по 1000 пикселов (по одной на каждый из 3 спектральных каналов). Разрешение 35x45 м, скорость сканирования 200 строк/с; полоса обзора каждого сканера 45 км; если включены оба сканера, то полоса обзора составляет 80 км, так как полосы обзора перекрываются. Над одной и той же точкой поверхности спутник пролетает один раз в 14 дней. Чтобы повысить регулярность приема, предусмотрено отклонение оси сканера на ±30° от надира в направлении, перпендикулярном направлению снижения спутника. Это позволяет смещать полосу обзора на ±400 км.

Спектральные каналы сканера: 0,5-0,59; 0,61-0,69; 0,7-0,89 мкм. Масса прибора 23 кг Результаты измерений передаются по радиоканалу на частоте около 8 ГГц со скоростью 7,68 Мбит/с, мощность бортового передатчика 10 Вт.

Рис. 17 - Спутник «Ресурс-01»

Спутник LANDSAT-5 (США). Высота орбиты 705 км, наклонение орбиты 98,2°, период обращения 98 мин. Над одной и той же точкой поверхности пролетает один раз в 16 дней приблизительно в 9ч 45 мин местного времени. Установлены 2 сканера с цилиндрической разверткой: Multi-Spectral Scanner (MSS) и Thematic Mapper (TM). MSS имеет спектральные каналы 0,49-0,605 мкм (зеленый участок спектра), 0,603-0,7 мкм (красный), 0,701-0,813 мкм (красный - ближний ИК), 0,808-1,023 мкм (ближний ИК), разрешение AL - 80 м, зона обзора 185 х 185 км. Сканирование осуществляется с помощью качающегося зеркала диаметром 30 см с частотой качания 13,62 Гц. Выходной сигнал квантуется на 64 уровня для каждого из каналов.

Thematic Mapper имеет разрешение ДL = 30 м во всех спектральных каналах, кроме шестого, где оно равно ДL = 120 м. 1-4-й каналы перекрывают диапазон 0,45-0,9 мкм; 5-й-1,55-1,75 мкм; 7-й-2,08-2,35 мкм; 6-й канал тепловой (10,4-12,5 мкм). Формирование изображения осуществляется с помощью вращающегося зеркала диаметром 53 см с частотой 7 Гц. В 1-4-м каналах в качестве фотоприемников применяются кремниевые фотодиоды, в 5-м и 7-м каналах - фоторезисторы из InSb, охлаждаемые до 87 К, в 6-м канале использован фоторезистор из (HgCd) Те. ТМ имеет полосу обзора 185 км, выходной сигнал каждого канала квантуется на 256 уровней, скорость формирования информационного потока 85 Мбит/с.

Если бы для каждого канала применялся один фотоприемник, то при указанных скоростях сканирования не удалось бы обеспечить указанного разрешения. Столь высокое разрешение сканеров достигнуто за счет применения линейки фотоприемников, ориентированной вдоль направления движения спутника, и последовательного считывания информации с элементов линейки.

Заключение

Космические средства дистанционного зондирования Земли в настоящее время получили широчайшее применение во всем мире, выросло разнообразие создаваемых типов космических аппаратов дистанционного зондирования Земли и общее их количество. Получаемая ими космическая информация используется для решения многих хозяйственных и научных задач мониторинга окружающей среды.

Список литературы

1. Кондратьев К.Я., Тимофеев Ю.М. Метеорологическое зондирование атмосферы из космоса. Л.: Гидрометеоиздат, 1978. 279 с.

2. Зуев В.Е., Креков Г.М. Оптические модели атмосферы. Л.: Гидрометеоиздат, 1986. 256 с.

3. Хргиан А.Х. Физика атмосферы. М.: Изд-во МГУ, 1988. 327 с.

4. Гарбук С.В., Гершензон В.Е. Космические системы дистанционного зондирования Земли. М.: Сканэкс, 1997. 296 с.

5. Киенко Ю.П. Введение в космическое природоведение и картографирование. М.: Картгецентр-Геодезиздат, 1994. 214 с.

6. Дистанционное зондирование: количественный подход: Пер. с англ. / Под ред. А.С. Алексеева. М.: Недра, 1983. 415 с.

Размещено на Allbest.ru

Подобные документы

    Хронология изучения объекта J002E2. Тайна "нового спутника Земли" разгадана. Новая "луна", вращающуюся вокруг Земли. Космический каменный обломок, попавший в зону земного притяжения, или отработанный корпус ракеты?

    реферат , добавлен 09.10.2006

    Гипотеза о возникновении Луны – естественного спутника Земли, краткая история ее исследования, основные физические данные о ней. Связь фаз Луны с её положением относительно Солнца и Земли. Лунные кратера, моря и океаны. Внутреннее строение спутника.

    презентация , добавлен 07.12.2011

    Запуск первого в мире искусственного спутника Земли был осуществлен в Советском Союзе 4 октября 1957г. История создания первого спутника связана с работой над ракетой как таковой. Постановление о создании в СССР ракетной отрасли науки и промышленности.

    реферат , добавлен 19.01.2011

    Форма, размеры и движение Земли. Поверхность Земли. Внутреннее строение Земли. Атмосфера Земли. Поля Земли. История исследований. Научный этап исследования Земли. Общие сведения о Земле. Движение полюсов. Затмение.

    реферат , добавлен 28.03.2007

    Идея Н.И. Кибальчича о ракетном летательном аппарате с качающейся камерой сгорания. Идея К. Циолковского об использовании ракет для космических полетов. Запуск первого искусственного спутника Земли и первого космонавта под руководством С.П. Королева.

    презентация , добавлен 29.03.2015

    Реализация США устойчивой и доступной программы пилотируемого и автоматического исследования Солнечной системы и сфер за ее пределами. Индийская организация космических исследований (Isro). Космические программы Китая. Искусственные спутники Земли.

    реферат , добавлен 11.11.2013

    Начало проникновения человека в космос. Запуск Советским Союзом первого в истории человечества искусственного спутника Земли. Первые "космонавты", этапы их отбора и подготовки. Полёты человека в космос. Роль Гагарина, Титова в развитии космонавтики.

    реферат , добавлен 31.07.2011

    К.Э. Циолковский как основоположник космонавтики в России. Важнейшие этапы освоения космоса. Запуск первого искусственного спутника Земли Спутник-1. Первый отряд космонавтов СССР. Первый полёт человека в космос. Исторические слова Юрия Гагарина.

    презентация , добавлен 11.04.2012

    Гипотеза гигантского столкновения Земли с Тейей. Движение Луны вокруг Земли со средней скоростью 1,02 км/сек по приблизительно эллиптической орбите. Продолжительность полной смены фаз. Внутреннее строение Луны, приливы и отливы, причины землетрясений.

    отчет по практике , добавлен 16.04.2015

    Солнечная система, ее строение и место Земли в ней. Данные исследования метеоритов и лунных пород и возраст Земли: фазы эволюции. Строение Земли: гидросфера, тропосфера, стратосфера, атмосфера и литосфера. Сильно разреженная часть атмосферы – экзосфера.

Исследование природных ресурсов планеты с помощью космических методов

Тема: Исследование природных ресурсов планеты с помощью космических методов.

Сделала: ученица 10-а класса

Муниципальной общеобразовательной

Молодцова Ольга

учебный год 2003-2004

План реферата

1. Введение…………………………………………………………..…. 3

2. Землеведение…………………………………………………….….. 4

3. Способы изучения Земли………………………………………….. 6

4. Область изучения…………………………………………………... 9

5. Список литературы……………………………………………….. 10

Введение.

Стремительное развитие космонавтики, успехи в изучение околоземного и межпланетного космического пространства в огромной степени расширило наши представления о Солнце и Луне, о Марсе, Венере и других планетах. Вместе с тем выявилось весьма высокая эффективность использования околоземного космоса и космических технологий в интересах многих наук о Земле и для различных отраслей хозяйства. География, гидрология, геохимия, геология, океанология, геодезия, гидрология, землеведение – вот некоторые из наук, ныне широко использующих космические методы и средства исследования. Сельское и лесное хозяйство, рыболовство, мелиорация, разведка сырьевых ресурсов, контроль и оценка загрязнения морей, рек, водоемов, воздуха, почвы, охрана окружающей среды, связь, навигация – таков далеко не полный перечень направлений, использующих космическую технику. Использование искусственных спутников Земли для связи и телевидения, оперативного и долгосрочного прогнозирования погоды и гидрометеорологической обстановки, для навигации на морских путях и авиационных трассах, для высокоточной геодезии, изучения природных ресурсов Земли и контроля среды обитания становится все более привычным. В ближайшей и в более отдаленной перспективе разностороннее использование космоса и космической техники в различных областях хозяйства значительно возрастет.

С позиции географии большой интерес представляет космическое землеведение. Так называют совокупность исследований Земли из космоса с помощью аэрокосмических методов и визуальных наблюдений. Главные цели космического землеведения – познание закономерностей космической оболочки, изучение природных ресурсов для их оптимального использования, охрана окружающей среды, обеспечение прогнозов погоды и других природных явлений. Космическое землеведение стало развиваться с начала 60-х годов, после запуска первых советских и американских искусственных спутников Земли, а затем и космических кораблей.

как бы продолжением и новым качественным развитием традиционной аэрофотосъемки. Одновременно начались и визуальные наблюдения экипажей космических кораблей, также сопровождавшиеся космической съемкой. При этом вслед за фотографией и телевизионной съемкой стали применяться более сложные ее виды – радиолокационные, инфракрасная, радиотепловая и другое особое значение для космического землеведения имеют некоторые отличительные свойства космической съемки.

Первое из них - огромная обзорность. Съемка со спутника и космических кораблей обычно осуществляется с высоты от 250 до 500 км.

Другие важные отличительные свойства космической съемки - большая скорость получения и передачи информации, возможность многократного повторения съемки одних и тех же территорий, что позволяет наблюдать природные процессы в их динамике, лучше анализировать взаимосвязи между компонентами природной среды и тем самым увеличивает возможности создания общегеографических и тематических карт.

В последствии развития космического землеведения в нем было выделено несколько подотраслей или направлений.

Во-первых, это геолого-геоморфологические исследования, которые служат основой изучения строения земной коры. В СССР их так же использовали приинженерно-геологических исследованиях (например, при проведении трасс нефтепроводов, Байкало-Амурской железнодорожной магистрали), при геологоразведочных и геолого-съемочных работах (например, для выявления разломов земной коры, тектонических структур, перспективных на нефть и газ).

Способы изучения Земли.

Проблема изучения природных ресурсов, оценка их запасов, объема и темпа расходования, возможности их сохранения и восстановления приобретают в наше время все большую актуальность. На первый план выдвинулись также задачи охраны окружающей среды, борьба с загрязнением почвы, воздуха, водоемов. Возросла необходимость постоянного контроля состояния и рационального использования лесных массивов, источников пресной воды, животного мира.

Развитие растениеводства, животноводства, лесного хозяйства, рыболовства, других областей хозяйственной деятельности человека потребовало применения новых более современных принципов контроля окружающей среды и значительно более оперативного получения его результатов.

Исчерпывание сырьевых ресурсов, находящихся в сравнительно близких и освоенных человеком местах, привело к необходимости изыскания их в отдаленных, труднодоступных, глубинных районах. Возникла задача охвата разносторонней разведкой больших площадей.

Главными достоинствами космических средств, при использовании их для изучения природных ресурсов и контроля окружающей среды являются: оперативность, быстрота получения информации, возможно доставки её потребителю непосредственно в ходе приёма с КА, разнообразие форм наглядность результатов, экономичность.

Отметим, что внедрение космической техники отнюдь не исключает применения в ИПР и КОС самолетных и наземных средств. Наоборот, космические средства могут быть более, эффективно используют именно в сочетании с ними.

Помимо перечисления целей, выявилась эффективность использования космической техники для решения некоторых задач градостроительства, строительства и эксплуатации транспортных магистралей и другое.

объектов на расстоянии, с помощью чувствительных элементов и устройств, не находящихся в прямом контакте (непосредственно близость) с предметом измерений (исследований).

В основе этого метода лежит то важное обстоятельство, что все естественные и искусственные земные образования испускают электромагнитные волны, содержащие как собственное излучение элементов суши, океана, атмосферы, так и отраженное от них солнечное излучение. Установлено, что величина и характер идущих от них электромагнитных колебаний существенно зависят от вида, строения и состояния (от геометрических, физических и иных характеристик) излучаемого объекта.

Эти-то различия в электромагнитном излучении земных различных образований и позволяют применять метод дистанционного зондирования для изучения Земли из космоса.

Чтобы достигнуть чувствительных элементов приемных устройств, установленных на космическом аппарате электромагнитные колебания, идущие с Земли, должны пронизывать всю толщу земной атмосферы. Однако атмосфера пропускает далеко не всю электромагнитную энергию, излучаемую с Земли. Немалая часть её, отражаясь, возвращается на Землю, а некоторое количество рассеивается и поглощается. При этом атмосфера не безразлична к электромагнитным излучениям различной длины волны. Одни колебания она пропускает сравнительно свободно, образуя для них «окна прозрачности», другие – почти полностью задерживает, отражая, рассеивая и поглощая их.

Поглощение и рассеяние электромагнитных волн атмосферой обусловлены ее газовым составом и аэрозольными частицами, и в зависимости от состояния атмосферы она действует на изучение с Земли неодинаково. Поэтому на приемное устройство космического аппарата может только та часть электромагнитного излучения от исследуемых объектов, которая способна пройти сквозь атмосферу. Если влияние ее велико, то возникают существенные изменения в спектральном, угловом и пространственном, распределении излучения.

ее оценке в зависимости от различных факторов.

Значение степени и характера влияния атмосферы, на происхождение сквозь нее электромагнитного излучения с Земли для излучения природных ресурсов из космоса весьма существенно. Особенно важно знать влияние атмосферы на прохождение электромагнитных волн при изучении слабо излучающих и плохо отражающих земных образований, когда атмосфера может почти полностью подавить или исказить сигналы, характеризующие исследуемые объекты.

Для изучения природных ресурсов из космоса подбирают такое время и условия, когда поглощающее и искажающие влияние атмосферы минимально. При работе в видимом диапазоне выбирается светлое время суток, при возвышении угла Солнца над горизонтом 15 - 35°, при невысокой влажности, небольшой облачности, возможности большой прозрачности и малой аэрозольности атмосферы.

Области изучения.

В области геологии: выявление месторождений полезных ископаемых, определение перспективных районов добычи нефти, газа, руды, угля и другие; картографическая и геологическая подготовка крупного строительства; оценка сейсмической и вулканической деятельности, получение данных для их прогнозирования; обследование районов шахт и открытых разработок, оценка ущерба растительности в этих районах.

прогнозирование стока вод после весенних паводков, определение угрожаемых районов и эффективности мер, принимаемых для уменьшения ущерба от наводнений; контроль за изменением водного режима рек в частности в целях оптимального использования мощности гидроэлектростанций.

В области океанологии, океанографии, рыболовства; прогнозирование явлений, влияющих на эффективность судоходства и представляющих опасность для прибрежных районов; оценка морских путей; изменение величены и характера волнений водной поверхности больших акваторий; наблюдение за ледовой обстановкой в высокоширотных районах, контроль за образованием и движением айсбергов; определение районов богатых планктоном, обещающих эффективные уловы, выявление косяков рыбы и скопление промысловых животных.

В области биосферы и охраны окружающей среды; оценка загрязнённости воды в конкретных водоёмах и воздуха в различных районах; контроль сброса сточных вод и насосов в районах плотной заселённости (крупных городов); контроль за местонахождением и миграцией диких животных.

В области сельского и лесного хозяйства, землеведение и мелиорации: оперативная оценка стадий развития, степени зрелости и урожайности культур; выявление поражения отдельных участков полей и лесов, установление эффективности мер, направленных на сохранение растений, оценка состояния участков леса и запасов древесины, таксация лесов; планирование вырубки и посадок; обнаружение лесных пожаров, контроль их развития и эффективности, противопожарных мер; выявление заболоченности определённых районных ирригационные оценки, планирование дренажных и мелиорационных работ; землепользование в конкретных регионах, контроль орошаемых земель, оценка пастбищ.

1 «Мировое освоение космических пространств». Издательство-Наука. Москва 1982 г.

Обозначим большую полуось сфероида (экваториальный радиус) через a, малую (полярный радиус) -- через b; отношение (a-b)/a называется сжатием земного сфероида б. На величину a влияет не только скорость вращения планеты на своей оси, но и характер (степень однородности) внутреннего строения планеты. Наиболее правильно и точно представляет общую фигуру Земли в целом эллипсоид, вычисленный Ф. Н. Красовским и его сотрудниками на основании новых данных, полученных при обработке градусных измерений СССР, Западной Европы и США. Следовательно, экваториальный диаметр Земли равен 12756,5 км, длина земной оси 12713,7 км, а полярный радиус короче экваториального всего на 21,4 км, в связи с чем среднее полярное сжатие настолько ничтожно, что земной сфероид практически почти не отличается от правильного шара. Величина сжатия у таких планет, как Юпитер, Сатурн и Уран, много больше: она равна соответственно 1: 15,4; 1: 9,5 и 1: 14. Их большее сжатие объясняется наличием атмосфер огромной протяжённости и тем, что они вращаются на своих осях почти в два с половиной раза быстрее, чем Земля. Средним радиусом Земли принято считать радиус шара, одинакового по объёму с земным сфероидом, а именно 6371,110 км. Вычислено, что поверхность земного сфероида составляет округлённо 510 млн. кв. км, а объём 1,083 X 1012 куб. км. Длина окружности меридиана 40008,548 км. Работы по вычислению нового эллипсоида показали, что Земля есть, в сущности, трехосный эллипсоид. Это означает наличие у неё не только полярного, но и экваториального сжатия, которое, впрочем, равно всего 1:30 000. Следовательно, земной экватор -- не окружность, а эллипс; наибольший и наименьший радиусы экватора отличаются на 213 м. Однако принятие трехосного эллипсоида в геодезических работах сильно усложнило бы эти работы и не принесло бы особых практических выгод. Поэтому фигуру Земли в геодезии и картографии рассматривают как двухосный эллипсоид.

Космический метод

Космическая геодезия -- наука, изучающая использование результатов наблюдений искусственных и естественных спутников Земли для решения научных и научно-технических задач геодезии. Наблюдения выполняют как с поверхности планеты, так и непосредственно на спутниках. Космическая геодезия получила широкое развитие с момента запуска первого искусственного спутника Земли.

Одной из задач космической геодезии является изучение фигуры Земли, Луны и планет с использованием спутниковых измерений.

С момента запуска искусственного спутника Земли 1958 год, перед геодезией были поставлены новые задачи, это наблюдения за искусственными спутниками Земли но орбите и определение пространственных координат точек Земной поверхности, создание опорной геодезической сети.

Влияние отклонений реальных орбит искусственных спутников Земли от вычисленных по формулам Кеплера, позволяет уточнить представление о гравитационном поле Земли и в конечном результате о ее форме.

В заключении приведем некоторые соображения, связанные с перспективами развития космической геодезии. Дело в том, что в настоящее время исследователи довольно ясно представляют себе, как применять существующие космические средства и методы для решения основных задач геодезии и геодинамики. По прежнему остается основной задачей геодезии определение размеров, фигуры и гравитационного поля Земли. Будет продолжена работа по уточнению и развитию больших региональных и глобальных триангуляционных сетей. В этой работе существенную роль играет установление единой общеземной системы координат для высокоточных измерений, а на первом этапе - определение взаимного положения начал и ориентировки осей различных систем геодезических координат.

Бытующее до сих пор мнение, что началом общеземной системы координат должен быть центр масс Земли, может измениться. Проблема определения положения центра масс в теле Земли оказалась гораздо сложнее, чем предполагали ранее: в точной постановке речь должна идти о центре масс системы Земля - Луна. Создание новой аппаратуры позволит с большей точностью изучать такие тонкие геодинамические эффекты, относящиеся именно к системе Земля - Луна, как движение полюсов Земли, вариации скорости вращения Земли, земные приливы.

Продолжится изучение смещений континентальных плит, несомненно будет осуществлен один из проектов глобальной службы слежения за движением материков. Продолжатся тончайшие, на пределе точности (несколько микроГал), исследования вариаций силы тяжести.

Но развитие космических методов в ближайшем будущем не ограничится их использованием в пределах Земли.

И хотя приставка «гео» остается в названиях научных дисциплин, о которых мы говорим, методы эти давно стали общими для исследования Солнечной системы в целом.

Давно уже ведется изучение гравитационного поля и фигуры Луны. Существуют даже попытки ввести в научный обиход термин «селенодезия» (Селена - древнегреческое название Луны). Есть смысл говорить об определении гравитационных полей планет.

А если серьезнее заглядывать в будущее космических методов, то можно представить себе такую задачу. Нельзя ли создать в рамках Солнечной системы единый подход к системам координат, который помогал бы увязывать их в единую иерархическую структуру?

Дело в том, что при полете КА к далеким планетам он как бы переходит из системы геоцентрической в гелиоцентрическую, потом, например (если пролетает около Марса), в ареацентрическую, а у нее должна быть связь с системами координат спутников Марса и т. д.

И если представить себе разницу в размерах (масштабах) этих систем координат, то неясным становится, как выдерживать единые требования к относительной точности определяемых координат.

Для самого КА эта проблема в основном «снимается» возможностями корректировки его движения, а для планет и их естественных спутников имеет существенное значение. И поскольку освоение Солнечной системы началось и продолжается, задача установления единой для Солнечной системы структуры систем координат будет, несомненно, решаться. }